On the hull number of some graph classes
نویسندگان
چکیده
Given a graph G = (V,E), the closed interval of a pair of vertices u, v ∈ V , denoted by I[u, v], is the set of vertices that belongs to some shortest (u, v)-path. For a given S ⊆ V , let I[S] = ⋃ u,v∈S I[u, v]. We say that S ⊆ V is a convex set if I[S] = S. The convex hull Ih[S] of a subset S ⊆ V is the smallest convex set that contains S. We say that S is a hull set if Ih[S] = V . The cardinality of a minimum hull set of G is the hull number of G, denoted by hn(G). We show that deciding if hn(G) ≤ k is an NP-complete problem, even if G is bipartite. We also prove that hn(G) can be computed in polynomial time for cactus and P4-sparse graphs.
منابع مشابه
On the Maximum Number of Dominating Classes in Graph Coloring
In this paper we investigate the dominating- -color number، of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and H. This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2].
متن کاملThe Merrifield-Simmons indices and Hosoya indices of some classes of cartesian graph product
The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, we give formula for Merrifield-Simmons and Hosoya indices of some classes of cartesian product of two graphs K{_2}×H, where H is a path graph P{_n}, cyclic graph C{_n}, or star gra...
متن کامل4-Prime cordiality of some classes of graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
متن کاملThe hull number of strong product graphs
For a connected graph G with at least two vertices and S a subset of vertices, the convex hull [S]G is the smallest convex set containing S. The hull number h(G) is the minimum cardinality among the subsets S of V (G) with [S]G = V (G). Upper bound for the hull number of strong product G⊠H of two graphs G and H is obtainted. Improved upper bounds are obtained for some class of strong product gr...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 38 شماره
صفحات -
تاریخ انتشار 2011